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Abstract: The interference that results from pro-
cessors attempting to simultaneously access the
same main memory in a multiprocessor can be
reduced by constructing the memory from
separate modules accessible through a crossbar
network. The effectiveness of this solution depends
on the number of processors and the number of
memory modules, and on the parameters of the
computation being executed, such as the think
time of the processors, the frequency of their
access to main memory, and the length of time
these accesses are connected to memory. This
paper presents a memory-interference model that
allows one to evaluate the performance of
crossbar-based multiprocessors. The model is a
discrete-time model that explicitly describes each
processing element's behaviour by means of a
semi-Markov process. The chief advantage of the
semi-Markov model is its conciseness and its
capability of accounting for variance in model
parameters. The model is first developed for the
case in which memory accesses are directed to
each memory module equiprobably. Central to
the model is a theorem that gives the residual
waiting time experienced by a processor when
accessing a busy memory. Comparisons are made
with earlier models. These comparisons show the
semi-Markov model to be more accurate, particu-
larly in those cases where there is a high degree of
variance in the connection time. Finally, the
model is generalised to deal with cases where
accesses to each memory module are not equi-
probable.

1 Introduction

To reduce the bottleneck to main memory in a multipro-
cessor, the main memory can be organised as a number
of memory modules that can be accessed simultaneously
by processors through a crossbar interconnection
network. An example is depicted in Fig. 1. It has N pro-
cessing elements (PEs) and M memory modules (MMs).
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Fig. 1. Block diagram of a multiprocessor system

Such systems have been discussed in the literature for
some years [1]; recently they have become a commercial
reality [2]. Although the crossbar reduces the bottleneck
to main memory, two types of memory conflict, or inter-
ference, can occur that prevent the complete elimination
of the bottleneck. Type 1 conflicts arise when several PEs
attempt to access an idle MM simultaneously. In this
situation one of the PEs is selected, according to a prede-
fined selection strategy, to access the MM while the other
PEs wait until the selected PE is done. Type 2 conflicts
arise when one or more PEs attempt to access a busy
MM. In this situation the PEs wait until the MM
becomes idle before they again attempt an access. Both
types of conflict have a negative effect on the overall per-
formance of the multiprocessor system by, among other
things, reducing the memory bandwidth and increasing
the average queueing time for memory.

This paper introduces a discrete-time model for
crossbar-based multiprocessors predicated on a widely
accepted set of assumptions that characterise multipro-
cessor behaviour as a stochastic process [1, 3-13]. The
model describes the behaviour of each PE with a semi-
Markov process and can be used to determine memory-
interference effects on the processor's performance.
Semi-Markov processes have been used successfully to
model multiple-bus systems [14], where it was demon-
strated that they allow complex system interactions to be
modelled in a concise way. This paper complements Ref-
erence 14 by dealing with a different kind of multiproces-
sor system. More importantly, a theorem that is central
to the semi-Markov model is proved for the first time,
and the model is generalised to deal with cases where
accesses to each memory module are not equiprobable.

The literature contains a number of discrete-time
memory-interference models for crossbar-based systems.
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In most of these models, system operation is character-
ised as follows. At the beginning of the system cycle a PE,
which has no pending request, makes a request to access
a MM with probability r. The MM is chosen at random
with probability 1/M. If a type 1 conflict occurs at the
MM, the memory selects, with equal probability, one of
the conflicting PEs to access it. The PEs that are not
selected attempt again to access the same memory in the
next system cycle. This retry will generally occur in the
presence of new requests for access. The connection
between the PE and the MM lasts for one system cycle;
at the end of this cycle the PE releases the MM. Only
type 1 conflicts take place under these assumptions. A PE
will have at most one pending request waiting for a MM.
The behaviour of the PEs are considered to be indepen-
dent and statistically identical.

Markov chains have been used to describe the above
process [3, 6]. The drawback of using Markov chains is
the unmanageably large state space. This obstacle led to
the development of models in which further simplifying
assumptions were adopted [1, 4—10, 12]. One of the main
themes of these is the reduction of the state space while
maintaining reasonable agreement with simulation
results.

Some of the approximate models have been extended
to the case in which memory requests are not sent equi-
probably to every MM [1, 7, 10, 12]. Another extension
is reported in References 6 and 7 where the description of
PE behaviour includes a think time, i.e., the time elapsed
between releasing a MM and requesting the next MM.
Think times may not be geometrically distributed as is
implicitly assumed in the system operation described
above. The study in Reference 6 concluded that the
memory bandwidth of the multiprocessor system will be
affected primarily by the first moment of the think time
but will be relatively insensitive to higher moments. A
third extension of system operation is introduced in Ref-
erences 11 and 13 where the connection time between a
PE and a MM can last for more than the single system
cycle. In Reference 11 it is assumed that the connection is
a fixed number of cycles. This extension was motivated
by a cache model where the cache line is a fixed-size
block. The study in Reference 13 allowed variable con-
nection times and showed the effect of variance in the
connection times, an important consideration if cache-
coherency checks are to be modelled. In Reference 13 a
Markov-chain model was used to describe the behaviour
ofthePE.

The semi-Markov model consolidates the modelling
capabilities of all the above models into one model. It
further extends these capabilities by providing expres-
sions for the average length of memory request queues
and the average waiting time by a PE attempting to
access a memory. Thus, it is possible to analyse the inter-
action of variable connection time, arbitrary think-time
distribution and the distribution of the destination of the
memory requests on the system performance. This addi-
tional modelling capability is attained without having to
employ a complex Markov chain as in Reference 13.
Indeed, the number of states in the semi-Markov process
describing a PE is dependent only on the probability
mass function describing the destination of the memory
requests. For instance, in the simplest and most common
case, that is when requests are directed to each MM equi-
probably, a four-state semi-Markov process is sufficient
regardless of the think and connection-time distributions.

The next section describes the assumptions that char-
acterise the operation of crossbar-based multiprocessor

systems in the uniform case. This is defined as the case
when requests are directed to each MM equiprobably,
and the think time of each PE and the connection time
between PEs and MMs are identically distributed.
Section 3 defines the performance measures that can be
obtained from the model. Section 4 proves the theorem
that gives the residual waiting time experienced by a pro-
cessor when accessing a busy memory. This section also
develops a semi-Markov model for the uniform case,
illustrating it with two examples. Section 5 generalises the
assumptions and presents a general semi-Markov model.
Section 6 concludes the paper.

2 System-operation assumptions

The system of Fig. 1 is synchronised with a system clock
whose period is referred to as the 'system cycle', or, where
context allows, simply the 'cycle'. A PE in the system may
be in one of three states: accessing a MM, waiting at a
MM for it to become available, or thinking as when it is
working on an internal task with no outstanding memory
request. A MM can be either busy, when a PE is access-
ing it, or idle, when no PE is connected to it. The ith
processing element will be denoted by P£, and the ;th
memory module by MMj. Discrete random variables will
be denoted withji tilde, e.g. Z. The mean value of Z will
be denoted by Z and the second moment of Z will be
denoted Z1. The coefficient of variation of Z will be
denoted by Zv and is given by

Z =
standard deviation of Z

expected value of Z (Z)2

It combines the mean and second moment to give a
measure of randomness.

System operation for the uniform case will be charac-
terised by the following assumptions:

(i) The behaviour of the PEs can be modelled as identi-
cal stochastic processes.

(ii) The PEs think for an integer number of system
cycles. The thinking period of any PE is characterised by
a discrete, independent random variable t.

(iii) Each PE will submit a memory request after its
thinking period; requests originating from the same PE
are independent of each other provided they are not
resubmitted requests (see (iv) and (v)). The destination
MM of the nonresubmitted requests originating from any
PE will be determined by a discrete, independendent
random variable D which is uniformly distributed
between 1 and M.

(iv) When the first type of memory conflict occurs, the
MM selects, equiprobably, one of the conflicting PEs to
gain access. The blocked PE(s) wait until the connection
is completed and then they resubmit their requests to the
same MM.

(v) When the second type of memory conflict occurs,
the blocked PE(s) wait until the connection is completed
and then they resubmit their requests to the same MM.

(vi) The connection time between any PE and any
MM is characterised by a discrete independent random
variable C.

Empirical evidence reported in References 5-7 supports
the assumptions in the case where C is a deterministic
random variable with a value of one. Further work
reported in Reference 15 supports the uniform-case
assumptions where C is a discrete random variable with
arbitrarv distribution.
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Performance measures given by

A number of performance measures can be derived from
the semi-Markov model. These measures are: BW, the
memory bandwidth; PUA, the utilisation of PEt; MUj,
the utilisation of MMy, Lj, the average queue length for
MM/, and Wu, the average waiting time experienced by
PE{ in the queue for MMj.

(a) BW is defined as the average number of busy MMs
when the multiprocessor system reaches steady state.
This is the same as the average number of accessing PEs
when the system reaches steady state. Hence, BW can be
expressed as follows:

ft,-

BW = lim
t-*O0

r N
Pr(PEi is accessing at time t)

(b) PUt is the probability that PE( is thinking or acces-
sing a MM when the multiprocessor system reaches
steady state. Hence, PU{ can be expressed as follows:

PUi = lim Pr(PEt is thinking or accessing at time t)
r->oo

= 1 — lim Pr(PE{ is waiting at time t)
f-»oo

Some of the memory-interference models [11, 16] which
were motivated by cache studies of multiprocessor
systems, define PUi as the probability that PE( is think-
ing when the system reaches steady state. In this study,
we consider that memory accessing contributes to the
progress of the computation and is therefore counted as
useful work. The alternative quantity can be readily
derived from the model as will be shown in Example 1.

(c) MUj is the probability that MMj is busy when the
system reaches steady state. This is the same as the prob-
ability that any PE is accessing MMj when the multipro-
cessor system reaches steady state. Hence, MUj can be
expressed as follows:

MUj = lim
' OO I = 1

i is accessing MMj at time t)

The memory bandwidth BW can be expressed in terms of
the memory utilisations as follows:

M

BW =

(d) Lj can be defined as the expected number of PEs
waiting to access MMj. Hence, Lj can be expressed as
follows:

Y Hm Pr(PEt is waiting to access
i = 1 r -> oo

4 Memory-interference model

As noted in the Introduction, the memory-interference
model uses the notion of a semi-Markov process. Semi-
Markov processes are discussed in detail in References 17
and 18. For our purposes, a semi-Markov process can be
viewed as a Markov chain in which the stochastic
process may remain in a state for a random amount of
time called the sojourn time. In a Markov chain, the
sojourn time is deterministic with value one. If a semi-
Markov process has K states, a mean sojourn time in
state i of ^ and a limiting probability for state i in the
embedded Markov chain of nt, then the limiting prob-
ability of the semi-Markov process being in state i is

K (1)

(Strictly speaking, for eqn. 1 to be true, the embedded
Markov chain should be irreducible with ergodic states.
This will always be the case in the following discussion.)
The rate of leaving state i, A,-, is the reciprocal of the
average time elapsed between two consecutive departures
from state i, and is given by

i (2)

The average sojourn time in any one of the states of the
semi-Markov processes in our discussion is at least one
system cycle. Therefore, A, is in the range 0-1 and has the
same numerical value as the probability of leaving state i
at the beginning of a cycle. The term A, will, depending
on the context, be used for both the rate of leaving state i
and the probability of leaving state i.

The model uses a semi-Markov process to approx-
imate the behaviour of each PE. Therefore, N semi-
Markov processes will approximate the behaviour of the
multiprocessor system. In the uniform case these N pro-
cesses are identical. The states of the semi-Markov
process denote the different states of a PE and can be
partitioned into four disjoint subsets. In the uniform case
these subsets are singletons. In the next section, where the
general model is presented, this will no longer be true;
however, for the remainder of this section we will con-
sider only the uniform case. The first subset is the think-
ing subset, S'h = {0}. The process enters state 0 and
remains there for a period of time with mean value rj0,
equivalent to the thinking time of the PE (see Fig. 2). A

Fig. 2 Semi-Markov process that describes PE behaviour in the
uniform case

memory request is modelled by the semi-Markov process
leaving state 0. The destination state depends on the state
of the requested MM. The second subset is the accessing
subset, Sac = {1}. The process enters state 1 and remains
there for a period of time with mean value r\u equivalent
to the connection time between the PE and any MM.
From state 1, the process returns to state 0, i.e. the PE
resumes thinking after it has completed its memory
access. The third subset is the full waiting subset,
Sfw = {2}. The process enters state 2 when the PE
requests an idle MM simultaneously with at least one
other request, and the PE fails to be selected by the
module, i.e. a type 1 conflict occurs and another PE is
selected to have access to the MM. In this case the PE
has to wait for the full period of the connection time
between the MM and the selected PE; this period has a
mean value of r\2. The original PE will retry to access the
same MM when the selected PE releases the module. If it
succeeds, the process enters state 1, otherwise the process
reenters state 2. The fourth subset is the residual waiting
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subset, Srw = {3}. The process enters state 3 when the PE
requests a busy MM, i.e. when a type 2 conflict occurs.
The PE has to wait for the remaining (residual) connec-
tion time before retrying to access the MM; the mean
value for the residual time is rj3. The process then enters
state 1 if the PE succeeds in accessing the MM, or it
enters state 2 if it fails to obtain a connection. Clearly, the
semi-Markov description does not include which module
the PE is accessing or which module the PE is waiting to
access. This does not represent an approximation of the
PE's behaviour because of the symmetry in the uniform
case. In nonsymmetric cases, as will be shown in the next
section, the semi-Markov process has to represent this
information. The underlying approximation of the model
is in describing any PE behaviour independently from the
other PEs while compensating for the coupling between
the PE's behaviours in the transition probabilities
between the states of the semi-Markov process. The
coupling results from the PEs sharing the MMs.

The inputs to the_semi-Markov model are the values
of N, M, T, C and C2. The average sojourn times of the
states can be obtained from these inputs as follows:

(3)

The average sojourn times in states 0, 1 and 2 follow
from the definition of these states. The average sojourn
time in state 3 is obtained from the following theorem:

Theorem 1: If requests for a busy memory are equally
likely to occur at any point in time while the MM is
busy, then rj3, the average residual waiting time of a busy
memory seen by a requesting PE at the beginningof a
system cycle, is given by (Cr — C)/2(C - 1) when C > 1
and by 0 when C = 1.

Proof: Two events, A{ and B, will be used in this proof.
They are defined as follows: A( is the event that a
requesting PE will see a residual accessing time of i
cycles; B is the event that a requesting PE will find a
busy MM. Therefore, the average residual accessing time
of a busy memory seen by a requesting PE can be
expressed as

mined as follows:
S-i

T
C
C

C2-
2(C-

0

c
1)

7 = 0
7 = 1
7 = 2

7 = 3,

/ = 3,

C> 1

C = 1

where S is the maximum connection time between a PE
and any MM. The summation extends only to 5 — 1
because residual time does not include full waiting. In the
case where C = 1, C must be a deterministic random
variable of length 1. Thus S = 1, and, therefore, from the
previous equation >/3 = 0. Since A( and B are dependent
events, Bayes' rule can be used to obtain the following
equation:

o n Pr[A{ n 5]

Pr[A{ n JB] = £ (the accessing PE submitted, j
j=i

cycles ago, an accessing request of i + j cycles)

If requests for a busy memory are equally likely to occur
at any point in time while the MM is busy, then the
equation can be expressed as

./=;+I

At the same time, the term Pr [B] can be determined as
follows:

s ^ /the accessing PE obtained the\

jtri I connection, j cycles ago, for I

\ at least j + 1 cycles '
S ~ 1 S S

= I Z c(k)= S(i-l)c(7)
j=lk=j+l j = l

Therefore, for C > 1, //3 can be expressed as follows:

I
1 = 0

V

£
1(7-1M7) I(7-1M7)

" 1 c^ 'c2 -C

This formula for rj3 is very_similar to the usual one for
mean residual life, i.e. C2/2C. The difference arises
because we do not consider the full waiting event to be
part of the residual time. The behaviour of the formula is
consistent with intuition, as the following three examples
illustrate. When C = 1, then >/3 = 0, in other words, only
full waiting can occur. When C = 2 and C2 = 4 (a fixed-
length connection of 2 cycles), then rj3 = 1, in other
words, the wait is usually half the fixed-length connection
time. Finally, when C is geometrically distributed with
parameter p, such that C = 1/p = rj2 and C2 = (2 — p)/p2,
then rj3 = 1/p = rj2, in other words, there is an absence of
memory in the system. It should be noted that although,
as the above examples show, the formula for rj2 behaves
in a desirable manner, it is based on an assumption that
requests for busy memories occur at any time with equal
probability. This is not proved within the assumptions;
however, it is supported by the experimental results
below.

The following terms are useful in formulating the
model: R, WIN and BUSY. The first, R, is the probabil-
ity that a PE makes a request to access a particular MM
at the beginning of a system cycle. This is the probability
that one of two events occurs. The first event is that
the PE will direct a new request to that MM, i.e. the
processor leaves state 0. And the second event is that the
PE will resubmit a previously blocked request to that
particular MM, i.e. it leaves state 2 or 3. Thus, R is given
by

M
(4)

Let Pr[C = i], the probability mass function of C, be
written as c(i), then the term Pr[A{ n JB] can be deter-

The term WIN is the probability that an idle MM selects
a particular PE's request over other requests, if any, at
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the beginning of a system cycle. The probability that no
PE requests a particular MM is (1 — R)N, and thus the
probability that a particular MM is requested by at least
one PE is [1 — (1 — R)N~\. Since the expected number of
PEs which requested that MM is NR, WIN can be
expressed as follows:

WIN = ^ [1 - (1 - Kf] (5)

Finally, BUSY is the probability that a PE finds a partic-
ular MM busy servicing a request from another PE
which is not ready to release it. In other words, the
requesting PE experienced a type 2 memory conflict. The
probability that a PE is accessing a MM and is not ready
to release it is given by (Px — AJ, i.e., the probability that
the PE is in the accessing state (i^) and will not leave it
next cycle (A )̂. Any of (N — 1) PEs may be the one being
serviced and there are M possible MMs, therefore BUSY
is given by

BUSY =
M M

(C - (6)

The last step follows from eqn. 2.
The transition probabilities between the states of the

semi-Markov process can be written as follows:

a.- =
(1 - BUSY) WIN j = 1
(1 - BUSY){\ - WIN) j = 2
BUSY ; = 3

= (1 - BUSY)WIN

(7)

They can be obtained as follows. When the process of
Fig. 2 leaves the thinking state it can enter any of the
other states: it enters the accessing state with probability
ax if the MM is idle and the PE's request is selected; or it
enters the full waiting state with probability a2 if the MM
is idle and the PE's request fails to be selected; or it
enters the residual waiting state with probability a3 if the
MM is busy. The process always returns to the thinking
state after it leaves the accessing state, thus a0 = 1. The
process leaves the residual waiting state or the full
waiting state to enter the accessing state with probability
/? if the requested MM is idle and the PE's request is
selected; otherwise it will enter the full state with prob-
ability /?. (Although a. x = ft, we distinguish them in prep-
aration for the general case discussed in the next section.)

The limiting probabilities of the embedded Markov
chain (71s) can be solved in terms of BUSY and WIN
from eqn. 7. Then, from eqns. 2 and 4 we have

(8)

therefore, kx = MfiR = M{\ - BUSY)WIN R. Substitut-
ing this in eqn. 6 yields

BUSY =
(N - \){C - \)WIN R

1 + (N - \)(C - \)WIN R
(9)

The semi-Markov limiting probabilities (Ps) can be
derived from the rcs, eqns. 1 and 8, and can be expressed
as functions of R and the transition probabilities as
follows:

<
J = l

7 = 2

<x3 ri3M/lR j = 3

These four equations sum to 1, yielding

1

(10)

R =
(By

(11)

(Note that ^ = rj2).
At this point we have a set of nonlinear equations. The

nonlinearity occurs because the transition probabilities
are defined as functions of R by way of WIN (eqn. 5) and
BUSY (eqn. 9); on the other hand, the R is defined as
functions of the transition probabilities (eqn. 11). An iter-
ative algorithm can be used to solve these equations. The
algorithm will iterate on the value of R and then the per-
formance measures of the system can be derived. The
algorithm runs as follows:

(i) calculate the ^s from eqn. 3, and choose an initial
value for R (we used R = 0.5)

(ii) calculate WIN using eqn. 5
(iii) calculate BUSY using eqn. 9
(iv) calculate the transition probabilities using eqn. 7
(v) calculate new value for R from eqn. 11
(vi) repeat steps (ii)-(v) u n t i l ^ n a s t n e desired accu-

racy*.

The solution for R may be used to calculate the Ps from
eqn. 10. These can then be used to calculate the per-
formance measures of Section 3, as follows:

BW =

N

M

•-•e

Pt Vi

'2 + P3) Vj

- ( 1 + B t / S y ) \ + rj3BUSY

The last equation is the only one that does not follow
directly from the definition of the states of Fig. 2. It can
be derived by calculating the expected value of Wi} in the
usual way from the following probability mass function

PrlWu = 0] = ax

ij = kt]2 without visiting state 3]

Pr[W{i = (^3 + kt\2) with exactly one visit to state 3]

= a^pfp k>0

The derivation of the above equations proceeds as
follows. The probability that the process moves from
state 0 to state 1 without waiting is <xv The probability
that the process moves from state 0 to state 1 and makes
k visits to state 2 without visiting state 3 is a2 {fi)k~lfi,

* This is a simple fixed-point iteration scheme. Higher-order iteration
schemes could be used but were found unnecessary in our experiments.
Four iterations were usually sufficient.
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where k> 1. The probability the process moves from
state 0 to state 1 and makes one visit to state 3 and k
visits to state 2 is a3(/?)*/?, where k > 0. These three cases
exhaust aJJ the possible values for Wi}.

As a final note, it can be shown that, when C — C1 =
1.0, the semi-Markov model simplifies to the rate-
adjusted model of Reference 7.

PE,

j

PEN

crossbar
connection

MM,

:

MM,

Fig. 3 Multiprocessor system with private cache memories

4.1 Example 1
In this example, we will use the model to study a multi-
processor system with private cache memories. The
system is shown in Fig. 3. Each PE in the system consists
of a processor and a private cache memory. The MMs
form the shared memory. The system operation is charac-
terised as follows. At the end of a system cycle a pro-
cessor causes a cache fault in its private cache with
probability m. The average think time fis related to m by
the equation f= (\/m — I) + 1 = 1/m, i.e. the think time
between consecutive faults plus the cycle during which
the fault occurs. The PE which has a cache fault chooses,
with equal probability, one of the MMs with which to
transfer a line. When the connection is established
between the PE and the MM it lasts for a variable
number of cycles given by a discrete random variable, C.
The variability arises because cache coherency requires
reads to be performed in some transfers and writes before
reads in others. In the case of a memory conflict, of either
type, the rejected PEs will resubmit their requests to the
same MM when that MM becomes idle. This retry will
generally occur in the presence of new requests for access.

0.0 0.2 0.4 0.6 0.8 1.0

0.4 0.6
m

Fig. 4 Simulation results for a 32 x 32 system
a co=*o.o • c « i.o # c = 2.o T c

1.0

04 06 0.8 1.0

0.4 0.6 0.8 1.0
0.0
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A study, reported in Reference 11, models a similar
multiprocessor system in which the random variable C is
deterministic and cache coherence is ignored. A later
study, reported in Reference 16, develops a more realistic
model which includes the effects of coherence checks.
However, this model assumes a parallel-pipelined organ-
isation of memories rather than the parallel organisation
of Fig. 3. Nevertheless, as a result of considering cache
coherency the work of Reference 16 demonstrates the
need to model the connection time as a nondeterministic
random variable rather than a deterministic random
variable, although it does not develop a model suitable
for connection times having a high degree of nonde-
terminism (i.e. a large coefficient of variation Cv). Our
results below confirm the need to consider nonzero
values for Cu.

In this example, we compare the results of our model
and the results of the simple cache model reported in Ref-
erence 11 with simulations. Furthermore, we demonstrate
the effect of different connection distributions on the
results of our model and the simple cache model.

Fig. 4 shows the simulation results for a 32 x 32
system for different connection distributions (all have
€ = 4.0). It can be seen that^ the variation in Cv can dra-
matically effect BW, PUh Wu and L,. This effect is not
captured in the simple cache model because it uses only
the first moment of the connection time. Note that PU( is
defined in accordance with Reference 11, that is to say, as
the probability that P£, is thinking when the multipro-
cessor system reaches steady state (see Section 3). The
PUi measure was less sensitive to variations in Cv for this
reason. One clear observation from the results of Fig. 4 is
that Cv should be kept to a minimum. This may have
some impact on how cache faults are handled.

Fig. 5 shows the error between simulation and the
semi-Markov model as a percentage, where

^ A model results — simulation results
Error £ : —: x 100

simulation results

The errors are within 10% for utilisation measures (PU
and BW) and within 20% for queueing measures (W and

8
Q.

"5

-4

20

10

g1 0'

fc -10

-20
0.0 0.2 0.4 0.6

m
0.8 1.0

-15
00

Fig. 5 Error for the semi-Markov model for a 32 x 32 system

D C, = 0.0 • Cv = 1.0 # Cv = 2.0 • Cv = 4.0

IEE PROCEEDINGS, Vol. 134, Pt. E, No. 4, JULY 1987 209



L). Possible reasons for the relative lack of robustness of
the queueing measures has been discussed in Reference
15. The error appears to increase with Cv.

Fig. 6 shows the error between the simulation results
and the results obtained from the simple cache model.
For the most part, it can be seen that the semi-Markov
model produces results much closer to simulation.

4.2 Example 2
The experiment of Example 1 was repeated for a 32 x 8
system. Fig. 7 and 8 show the results. Again, variation in
Cv is seen to dramatically effect the performance mea-
sures. In this case the errors have increased to within
20% for utilisation measures and 25% for queueing mea-
sures. This reduction in accuracy is common for many
probabilistic memory-interference models when there is
significantly more processors than memories. The model
should be modified if accuracy is to be retained. When
there are just one or two memories, this modification can
take the form of coupling the semi-Markov processes for
individual processors into a single process.

5 General case

In the general case, D may have any distribution and the
N semi-Markov processes associated with each PE need
not be identical. The multiprocessor operation assump-
tions now become:

(i) The behaviour of the PEs can be modelled as sto-
chastic processes.

(ii) The PEs think for an integer number of system
cycles. The thinking period of PE{ is characterised by a
discrete, independent random variable 7) where
1 < i < N.

(iii) Each PE will submit a memory request after its
thinking period; requests originating from the same PE
are independent of each other provided they are not
resubmitted requests (see (iv) and (v)). The destination
MM of the nonresubmitted requests originating from PE,
will be determined by a discrete, independent random
variable /), where 1 < i < N.

(iv) When the first type of memory conflict occurs, the
MM selects, equiprobably, one of the conflicting PEs to

0.0 1.0 0.0

-100
0.0

Fig. 6 Error for the simple cache model

• C,. = 0.0 • Cv = 1.0 + C,. = 2.0 • C,. = 4.0
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gain access. The blocked PE(s) wait until the connection
is completed and then they resubmit their requests to the
same MM.

(v) When the second type of memory conflict occurs,
the blocked PE(s) wait until the connection is completed
and then they resubmit their requests to the same MM.

(vi) The connection time between PE{ and MMj is
characterised by a discrete independent random variable
Cu where 1 ̂  i ^ N and 1 ̂  j ^ M.

Theinput to the semi-Markov model are the values of
f,, Cy, C^and a ^ P r ^ . / ] .

The semi-Markov process of Fig. 9 describes the
behaviour of PEt. The general case requires N different
semi-Markov processes to describe the system behaviour.
The state space of each of the processes can be divided to
four disjoint subsets: S{* = {0}, S? = {1, . . . , M}, S{w =
{M + 1, . . . , 2M} and SJW = {2M + 1, . . . , 3M}. It may
be seen that this semi-Markov process collapses to the
uniform case process if atj = 1/M for all i and j . The solu-

tion in the general case follows the lines of earlier cases,
therefore only the outline of the solution will be present-
ed. The equation numbers indicate correspondence with
counterparts in the uniform case.

The average sojourn times in the states are as follows:

Itj =

't

N r»

Z ^fc, j-M P\
N Ufc

fc=l y „
1 = 1

j € S?

(3')

Z (
N

k = l

fc, j-2M

1 = 1
1*1

c2 c
c k,j~2M ~ t l ( , j - 2 M j € S?

fc,j-2M

8 r

1.0

Fig. 7 Simulation results for a 32 x 8 system
D C, = 0.0 A Ct. = 1.0 • Cv = 2.0 • Cv = 4.0

0.0 0.8 1.0
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where

**U ~ aij^i *ij (4')

Analogously to the case for ri3 when Cf c j_2 M = 1 the cor-
responding terms in the summations for the residual
waiting times are 0. The first subscript indicates the PE
and the second indicates the state. The terms WIN and
BUSY also require subscripts: the first indicates the PE
and the second indicates the MM. These terms can be
expressed as follows:

Furthermore

BUSYU= I(Pf c J-4,.)= i(Ckj- (6')

£ 1
WINU= Y -T l / f c

fc=l K

where,

\rj V1 I I /r
ijk — 2—i 1 1 ^i/fcV

and,

<M*0 = i

(5')

1 —

if P£,, PEh and fe - 2 other PEs
request MM^ in the /th case

otherwise

25 r

0.0 0.2 0.4 0.6 0.8 1.0

-25

Fig. 8 Error for the semi-Markov model for a 32 x 8 system

• Cv = 0.0 A C , = 1.0 • C = 2.0 • C = 4.0

The transition probabilities between the states of the
process can be defined as follows:

1 j e S|h

aij(l-BUSYij)WINij j e Sf

.uyil - WINitj_M) j e S{w

jeS™

jeSf

k = i - h J e sr
(7)

The embedded Markov chain can be solved and the ns
can be represented as functions of transition probabil-

-10

-15
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ities. Then, from eqn. 2, lkj may be defined as a function
of R and the transition probabilities. Therefore, using

Fig. 9 Semi-Markov process that describes PE behaviour in the
general case

eqn. 6', the term BUSYucan be expressed as follows:

BUSYtJ= £ ( C y - l ) i M u (9')

Furthermore, the semi-Markov process limiting probabil-
ities can be expressed as functions of R and the transition
probabilities as shown below:

tj Z Pit R>

Pn =
. j - M

. ; - 2Af ^ i . j - 2M

R-i.j-l

i, j-2M

(10')

To solve the general case an iterative algorithm can be
used similar to that proposed for the uniform case. In the
general case the algorithm iterates on the set of variables
Ru, where 1 < i < N and 1 < j < M. The performance
measures can be derived from the Ps as follows:

3Af

ptJ

i-1

N

"ij —
LPij

. 2M+jBUSYu

Examples illustrating the general case can be found in
Reference 19. A similar degree of accuracy was obtained
in the general case results as in those for the uniform case
of Section 4.

6 Conclusion

This paper has presented a discrete-time model of
memory interference for crossbar-based multiprocessor
systems. The model characterises such systems by
describing the behaviour of each PE as an independent
semi-Markov process. By viewing events from the per-
spective of the PEs, it is possible to model memory-
interference effects not explicitly modelled previously,
such as queueing time and queue length. In addition, the
effects of the coefficient of variation of the connection
time can also be readily modelled. Its importance was
shown in the examples given.

The complexity of solution for the model was shown
to be directly related to the number of distinct values that
the discrete random variable D can take on. For the
uniform case, the model requires only four states inde^
pendent of the number of discrete values that N, M, f
and C can have. One insight that emerged from
developing the model was that the simplifying assump-
tion in the rate-adjusted models, typified by the model in
Reference 7, is the decoupling between the PEs rather
than the resubmission policy as suggested in Reference
10.

Examples were presented to illustrate how the model
can be used to predict the performance of multiprocessor
systems. Simulations were included for comparison, and,
in all cases except queueing time and queue length, the
model differed by about 20% (the queueing time and
queue length differed by less than 25%). In most cases the
error was much smaller. The model performed well rela-
tive to a more typical model when Cv was high. Further
examples can be found in Reference 19. The error in the
semi-Markov model can be attributed to the decoupling
between the PE's behaviours. Because of this decoupling,
certain events are permissable in the model that cannot
occur in the real system. For example, the event that all
PEs are waiting has a nonzero probability. In reality, at
least one PE would be accessing.
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